Search results

Search for "noncovalent activation" in Full Text gives 2 result(s) in Beilstein Journal of Organic Chemistry.

New advances in asymmetric organocatalysis

  • Radovan Šebesta

Beilstein J. Org. Chem. 2022, 18, 240–242, doi:10.3762/bjoc.18.28

Graphical Abstract
  • Radovan Sebesta Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia 10.3762/bjoc.18.28 Keywords: asymmetric organocatalysis; covalent activation; noncovalent activation; Asymmetric catalysis is
  • repertoire of chemical transformations that are amenable to organocatalysis [14]. Within the realm of covalent activation, chiral carbenes and phosphines are diverse and structurally rich groups of catalysts. The synthetic scope was greatly expanded by noncovalent activation via a range of proton-mediated
  • transformations using chiral Brønsted acids, Brønsted base, and hydrogen bond donors. Recently noncovalent activation continues to expand into other types of weak attractive interactions such as halogen and chalcogen bonds. Not surprisingly, all activation modes allow further expansion and diversification via a
PDF
Editorial
Published 28 Feb 2022

Asymmetric organocatalyzed synthesis of coumarin derivatives

  • Natália M. Moreira,
  • Lorena S. R. Martelli and
  • Arlene G. Corrêa

Beilstein J. Org. Chem. 2021, 17, 1952–1980, doi:10.3762/bjoc.17.128

Graphical Abstract
  • discussed above, the organocatalysts may also proceed by noncovalent activation, in which a hydrogen bond or an ion pair is formed. A broad variety of mono- and bifunctional chiral hydrogen-bonding organocatalysts has been developed, in special using cinchona alkaloid derivatives [52]. In this sense, Lin
PDF
Album
Review
Published 03 Aug 2021
Other Beilstein-Institut Open Science Activities